
Neversink River West Branch MANAGEMENT UNIT 6

STREAM FEATURE STATISTICS

- 0.00% of stream length is experiencing erosion
- 1.10% of stream length has been stabilized
- 14.60 acres of inadequate vegetation within the 100 ft. buffer
- 1,000 feet of stream is within 50 ft. of the road
- No building structures are located within the 100-year floodplain boundary

Stream Feature Inventory 2010 (Figure 1)

M U W B 6.1

Management Unit Description

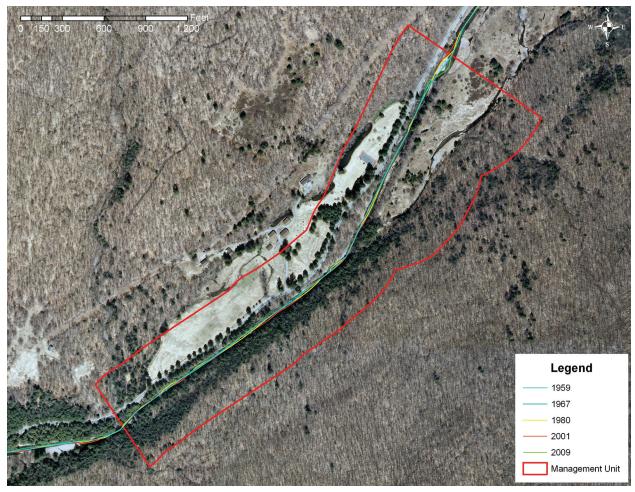
This management unit begins the end of a revetment adjacent to Frost Valley Road at Station 25000, continuing approximately 3,600 ft. to the convergence with Flat Brook at Station 21300. The drainage area ranges from 22.90 mi² at the top of the management unit to 25.10 mi² at the bottom of the unit. The valley slope is close to 0.62%. The average valley width is 549.83 ft.

Summary of Recommendations West Branch Management Unit 6

Intervention Level	No erosion site were documented in this management unit.
Stream Morphology	Protect and maintain sediment storage capacity and floodplain connectivity.
	Conduct baseline survey of channel morphology.
Riparian Vegetation	Investigate and evaluate 12.19 acres of potential riparian buffer improvement areas for future buffer restoration.
	Potential riparian buffer improvement sites exist between at various locations between Station 25000 and Station 21330 (Figure 7).
Infrastructure	None.
Aquatic Habitat	Fish population and habitat survey.
Flood Related Threats	None.
Water Quality	Investigation of water quality impacts of piped outfalls at Station 24020, Station 22600 and Station 21500. Maintain household septic systems.
Further Assessment	Include MU6 in comprehensive Local Flood Hazard Mitigation Analysis of Claryville MUs.

Historic Conditions

As the glaciers retreated about 12,000 years ago, they left their "tracks" in the Catskills. See Section 2.4 *Geology of Upper Neversink River*, for a description of these deposits. These deposits make up the soils in the high banks along the valley walls on the Neversink mainstem and its tributaries. These soils are eroded by moving water, and are then transported downstream by the River. During the periods when the forests of the Neversink watershed were heavily logged for bark, timber, firewood and to make pasture for livestock, the change in cover and the erosion created by timber skidding profoundly affected the Neversink hydrology and drainage patterns.


The 1875 Beers Atlas of this area indicates that by that time, the stream had been harnessed for manufacturing, primarily saw mills, woodworking

Excerpt from 1875 Beers Map (Figure 2)

shops and tanneries *(Figure 2)*. Raceways were built in the floodplains to divert water to ponds for use as needed. Floodplains were profoundly altered in the process, as these watercourses also became areas of preferential channelized flow when floodwaters inundated the floodplains. When woody debris jams blocked the primary channels, these raceways sometimes eroded out to become major secondary channels, or even took over the full flow to become a new primary watercourse.

During large runoff events, floodplains adjacent to the confluence of major tributaries receive large slugs of material eroded out of the steep streams draining the valley walls. overwhelmed the Neversink's ability to transport it, creating an alluvial fan. Like changes in the floodplains made by humans, these episodes can result in catastrophic shifts in channel alignment. In the roughly one hundred and twenty centuries since the retreat of the glaciers, the position of Neversink River has moved back and forth across its floodplain numerous times in many locations. A comparison of historical channel alignments (*Figure 3, following page*) and in-stream observations made during a stream feature inventory in 2010 (*Figure 1, page 1*) indicate some lateral channel instability. According to records available from the NYSDEC DART database no NYS Article 15 stream disturbance permits have been issued in this management unit. These permits pertain to activities which have the potential to significantly impact stream function, such as bank stabilization, stream crossings, habitat enhancement, and logging practices. database (http://www.dec.ny.gov/cfmx/extapps/envapps/).

Historical channel alignments from five selected years (Figure 3)

Stream Channel and Floodplain Current Conditions

The following description of stream morphology references stationing in the foldout Figure 4. "Left" and "right" references are oriented looking downstream, photos are also oriented looking downstream unless otherwise noted. Stationing references, however, proceed upstream, in feet, from an origin (Station 0) at the confluence with the Neversink Reservoir. Italicized terms are defined in the glossary. This characterization is the result of surveys conducted in 2010.

The first 1,000 feet of the main channel in WBMU6 are within 50 feet of Frost Valley Road, running down the middle of the valley floor with inactive historic floodplain on the right bank (disconnected by Frost Valley Road) and active floodplain on the left bank. Large portions of the riparian zone between

Cobble center bar (A122)

Station 25000 and Station 21330, particularly along the right side of the stream, consist of herbaceous vegetation and potential locations for riparian buffer improvement *(Figure 7)*. A cobble center bar with some gravel at the downstream end and little vegetation was observed from Station 24950 to Station 24800. *(A122)*

A piped outfall followed by a revetment was observed on the right bank near Station 24020. The piped outfall conveys intermittent flow from the cleared pasture on the right bank via a 15-inch diameter corrugated metal culvert with good outfall protection. It is recommended that the water quality impacts of this outfall be investigated to better understand and possibly mitigate the water quality implications of this conveyance. (A129) The 80-foot long revetment appeared to be designed to stabilize the bank and protect Frost Valley Road. The revetment was constructed of rip-rap and documented in good structural and functional condition. (A131)

Piped outfall convey flow from cleared pasture (A129)

Rip-rap revetment protecting Frost Valley Road (A131)

An old stone berm was observed on the left bank extending 90 feet from Station 23810 to Station 23720. The berm was covered with some grass and sedge vegetation and is located slightly upslope of a row of old birch trees. It is possible that this berm was designed to protect an orchard or other forest industry staging area in the left floodplain, although to fruit trees or other evidence of industrial infrastructure were observed. *(P7280034)*

The floodplain on the left bank ends at the convergence of the side channel flowing along the left valley wall near Station 23350. The river enters semi-confined valley conditions downstream of this location as it flows adjacent to the valley wall beginning at Station 23300. This confinement is further evidenced by the exposed bedrock was observed for 150 feet downstream of the convergence forming a bed grade and planform control on the main channel. *(P2780041)*

Downstream of the exposed bedrock the channel is straight and flows within 100 feet of Frost Valley Road. Near Station 22600 an intermittent tributary joins the main channel. The tributary is conveyed in smooth steel culverts under Frost Valley Road from the cleared field on the right bank. It is recommended that the water quality impacts of this outfall be investigated to better understand and possibly mitigate the water quality implications of this conveyance.

At Station 22400 an intermittent tributary conveying flow from the forested left valley wall joins the main channel, flowing over more exposed bedrock stream bed grade and planform control. *(P7280042)* Near Station 22100 the exposed bed rock begins to retreat from the stream bank with a forested bankful bench forming on the left bank.

Stone berm along left bank (P7280034)

Exposed bedrock providing bed and grade control (P7280041)

Intermittent tributary conveying flow from left valley wall (P7280042)

(P2780044) Another piped outfall conveying flow from Frost Valley Road and the cleared field on the right bank joins was observed at Station 21500. It is recommended that the water quality impacts of this outfall be investigated to better understand and possibly mitigate the water quality implications of this conveyance.

WBMU6 ends at Station 21300, slightly upstream of the Flat Brook convergence.

Forested bankfull bench forming on the left (P7280044)

Sediment Transport

Streams move sediment as well as water. Channel and floodplain conditions determine whether the reach aggrades, degrades, or remains in balance over time. If more sediment enters than leaves, the reach aggrades. If more leaves than enters, the stream degrades. (See Section 3.1 for more details on Stream Processes).

This management unit contains both sediment storage reaches and sediment transport reaches. The storage reaches, predominantly in the upper section of Management Unit 6, act as a "shock absorber", holding *bedload* delivered during large flow events in depositional bars and releasing it slowly over time in more moderate flood events. These depositional areas are very dynamic, with frequent lateral channel migration through bank erosion, *avulsions* and woody debris accumulations. The densely forested portion of the watershed within this management unit serves as a continuous source of large woody material that is transported downstream and deposited during flood events. This large woody debris often serves as an obstruction to sediment transport, resulting in the aggradation of bed material. Sediment storage reaches can result from natural conditions, like the widening valley floor and decreased channel slope as is the case in this management unit or as the unintended consequence of poor bridge design, check dams or channel overwidening. This is one process by which floodplains are created and maintained.

Much of the remainder of this management unit, however, is composed of sediment transport reaches, with relatively low channel sinuosity, and narrow bankfull-stage floodplains of moderate entrenchment with mature vegetation. In some locations in WBMU5 the river is confined by the bedrock or high banks, with relatively little floodplain available for short-term sediment deposition and storage. Transport reaches, like the areas in WBMU6 with boulder and bedrock grade and planform control, are in a state of *dynamic equilibrium*, effectively conveying sediment supplied from upstream during each flow event. However, the densely forested floodplain still serves as a source of large woody material that that can be introduced into the channel during flood events. This large woody debris often serves as a local obstruction to sediment transport, resulting in the aggradation of bed material and the development of floodplains

over the long-term. Healthy, undeveloped floodplains throughout the Neversink watershed like those in this management unit reduce the velocity of higher flows, thereby mitigating the threat of stream bank erosion and property damage during flood events.

To better understand sediment transport dynamics of this section of the Neversink, a baseline survey of channel form and function is recommended for this management unit.

Riparian Vegetation

One of the most cost-effective methods for landowners to protect streamside property is to maintain or replant a healthy buffer of trees and shrubs along the bank, especially within the first 30 to 50 ft. of the stream. A dense mat of roots under trees and shrubs bind the soil together, and makes it much less susceptible to erosion under flood flows. Mowed lawn does not provide adequate erosion protection on stream banks because it typically has a very shallow rooting system. Interplanting with native trees and shrubs can significantly increase the working life of existing rock rip-rap placed on stream banks for erosion protection. Riparian, or streamside, forest can buffer and filter contaminants coming from upland sources or overbank flows. Riparian plantings can include a great variety of flowering trees and shrubs, native to the Catskills, which are adapted to our regional climate and soil conditions and typically require less maintenance following planting and establishment.

Some plant species that are not native can create difficulties for stream management, particularly if they are invasive. Japanese knotweed (Fallopia japonica), for example, has become a widespread problem in recent years. Knotweed shades out other species with it's dense canopy structure (many large, overlapping leaves), but stands are sparse at ground level, with much bare space between narrow stems, and without adequate root structure to hold the soil of stream banks. The result can include rapid stream bank erosion and increase surface runoff impacts. There were no occurrences of Japanese knotweed documented in this management unit during the 2010 inventory.

An analysis of vegetation was conducted using aerial photography from 2009 and field inventories |(Figure 5). In this management unit the predominant vegetation type within the riparian buffer is deciduous closed tree canopy (43.60 %) followed by herbaceous vegetation (18.40%) and evergreen closed tree canopy (16.33%). *Impervious* area makes up 3.56% of this unit's buffer. There are 12.2 acres of potential buffer improvement area in this management unit (*Figure 7*). No occurrences of Japanese knotweed were documented in this management unit during the 2010 inventory.

There are 1.13 acres of wetland (1.62% of WBMU6 land area) within this management unit mapped in the National Wetland Inventory as two distinct classifications (see Section 2.5, *Wetlands and Floodplains* for more information on the National Wetland Inventory and wetlands in the Neversink watershed). Wetlands are important features in the landscape that provide numerous beneficial functions including protecting and improving water quality, providing fish and wildlife habitats, storing floodwaters, and maintaining surface water flow during dry periods (See Section 2.5 for wetland A type descriptions and regulations). The wetland classified as Freshwater Pond is 0.54 acres in size and the wetland classified as Freshwater Emergent Wetland is 0.59 acres in size.

Flood Threats

INUNDATION As part of its National Flood Insurance Program (NFIP), the Federal Emergency Management Agency (FEMA) performs hydrologic and hydraulic studies to produce Flood Insurance Rate Maps (FIRM), which identify areas prone to flooding. The upper Neversink River is scheduled to have its FIRMs updated with current surveys and hydrology and hydraulics analysis in the next few years, and the mapped boundaries of the 100-year floodplain are likely to change. There are no structures WBMU6 within the 100-year floodplain as identified on the FIRM maps.

BANK EROSION No areas of erosion were documented in the management unit during the stream feature inventory.

INFRASTRUCTURE A piped outfall followed by a revetment was observed on the right bank near Station 24020. The piped outfall coveys intermittent flow from the cleared pasture on the right bank via a 15-inch diameter corrugated metal culvert with good outfall protection. The 80-foot long revetment appeared to be designed to stabilize the bank and protect Frost Valley Road. The revetment was constructed of rip-rap and documented in good structural and functional condition.

An old stone berm was observed on the left bank extending 90 feet from Station 23810 to Station 23720. The berm was covered with some grass and sedge vegetation and is located slightly upslope of a row of row of old birch trees. It is possible that this berm was designed to protect an orchard or other forest industry staging area in the left floodplain, although to fruit trees or other evidence of industrial infrastructure were observed.

Aquatic Habitat

Aquatic habitat is one aspect of the Neversink River ecosystem. While ecosystem health includes a broad array of conditions and functions, what constitutes "good habitat" is specific to individual species. When we refer to aquatic habitat, we often mean fish habitat, and specifically trout habitat, as the recreational trout fishery in the Catskills is one of its signature attractions for both residents and visitors. Good trout habitat, then, might be considered one aspect of "good human habitat" in the Neversink River valley.

Even characterizing trout habitat is not a simple matter. Habitat characteristics include the physical structure of the stream, water quality, food supply, competition from other species, and the flow regime. The particular kind of habitat needed varies not only from species to species, but between the different ages, or life stages, of a particular species, from eggs just spawned to juveniles to adults.

New York State Department of Environmental Conservation (DEC) classifies the surface waters in New York according to their designated usses in accordance with the Clean Water Act. The following list summarizes those classifications applicable to the Neversink River.

- 1. The classifications A, AA, A-S and AA-S indicate a best usage for a source of drinking water, swimming and other recreation, and fishing.
- 2. Classification B indicates a best usage for swimming and other recreation, and fishing.
- 3. Classification C indicates a best usage for fishing.
- 4. Classification D indicates a best usage of fishing, but these waters will not support fish propagation.

Waters with classifications AA, A, B and C may be designated as trout waters (T) or suitable for trout spawning (TS). These designations are important in regards to the standards of quality and purity established for all classifications. See the DEC Rules & Regulations and the Water Quality Standards and Classifications page on the NYSDEC web site for information about standards of quality and purity.

In general, trout habitat is of a high quality in the Neversink River. The flow regime above the reservoir is unregulated, the water quality is generally high (with a few exceptions, most notably low pH as a result of acid rain; see Section 3.1, *Water Quality*), the food chain is healthy, and the evidence is that competition between the three trout species is moderated by some *partitioning* of available habitat among the species. The mainstem in WBMU6 has been classified as "C(T)" connoting best usage for fishing, and indicating the presence of trout. Trout spawning likely occurs in this management unit, but has not yet been documented in the DEC classification.

Channel and floodplain management can modify the physical structure of the stream in some locations, resulting in the filling of pools, the loss of stream side cover and the homogenization of structure and hydraulics. As physical structure is compromised, inter-species competition is increased. Fish habitat in this management unit appears to be relatively diverse.

It is recommended that a population and habitat study be conducted on the Neversink River, with particular attention paid to temperature, salinity, riffle/pool ratios and quality and in-stream and canopy cover.

Water Quality

The primary potential water quality concerns in the Neversink as a whole are the contaminants contributed by atmospheric deposition (nitrogen, sulfur, mercury), those coming from human uses (nutrients and pathogens from septic systems, chlorides (salt) and petroleum by-products from road runoff, and suspended sediment from bank and bed erosion. Little can be done by stream managers to mitigate atmospheric deposition of contaminants, but good management of streams and floodplains can effectively reduce the potential for water quality impairments from other sources.

Storm water runoff can have a considerable impact on water quality. When it rains, water falls on roadways and flows untreated directly into the Neversink River. The cumulative impact of oil, grease, sediment, salt, litter and other unseen pollutants found in road runoff can significantly degrade water quality. There are three piped outfalls that convey storm water runoff directly into the Neversink River in this management unit.

Sediment from stream bank and channel erosion pose a potential threat to water quality in the Neversink River. Clay and sediment inputs into a stream may increase *turbidity* and act as a carrier for other pollutants and pathogens. No bank erosion sites were documented in WBMU6.

Nutrient loading from failing septic systems is another potential source of water pollution. Leaking septic systems can contaminate water making it unhealthy for swimming or wading. Four structures are located in relatively close proximity to the stream channel in this management unit. These homeowners should inspect their septic systems annually to make sure they are functioning properly. Each household should be on a regular septic service schedule to prevent over-accumulation of solids in their system. Servicing frequency varies per household and is determined by the following factors: household size, tank size, and presence of a garbage disposal. Pumping the septic system out every three to five years is recommended for a three-bedroom house with a 1,000-gallon tank; smaller tanks should be pumped out more often.

The New York City Watershed Memorandum of Agreement (MOA) allocated 13.6 million dollars for residential septic system repair and replacement in the West-of-Hudson Watershed through 2002, and the program was refunded in 2007. Systems eligible included those that are less than 1,000-gallon capacity serving one-or-two family residences, or home and business combinations, less than 200 feet from a watercourse. Permanent residents are eligible for 100% reimbursement of eligible costs; second homeowners are eligible for 60% reimbursement. For more information, call the Catskill Watershed Corporation at 845–586–1400, or see http://www.cwconline.org/programs/septic/septic_article_2a.pdf.